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ABSTRACT

The electrical and thermal conductivities are computed analytically for conditions which prevail in
white-dwarf cores and the outer layers of neutron stars. We consider here the case in which the tempera-
ture is well above the Debye characteristic temperature, and calculate the transition probability for
electron-phonon collisions. Because of the peculiar conditions, namely, a Debye length that is much
larger than the interatomic spacing, both - and U-processes can be quite easily included, and a single
relaxation time characterizes the interaction. Relativistic effects are taken into account through use of
the Dirac wave function for the electron field, and in the relativistic Boltzmann equation. The resulting
formula has the exceedingly simple form

o = 1.04 X 102T 5 (ps/1e)?® sec™?,

where o is the electrical conductivity, u. is the electron “molecular weight,” pe is the density in units of
10¢ g cm™3, and Ty = T/108. The constant is independent of the ion mass, density, and charge. The
conductive opacity turns out to be

K, = 2.81 X 1073u2B3pg 53T .

I. INTRODUCTION

The atoms in the outer layers of neutron stars which have cooled to temperatures
below 5 X 108 °K are expected to arrange themselves into a lattice (Abrikosov 1960;
Ruderman 1968). In the case of a low-mass star this lattice may fill the entire volume.
One expects similar conditions to prevail in white dwarfs (Salpeter 1961). Under these
conditions, the atoms of the lattice should be stripped of their electrons, and the elec-
trons form a relativistic degenerate gas. Although Lampe (1968) has shown that elec-
tron-electron collisions can be important under nonrelativistic, nondegenerate condi-
tions, the primary source of resistance in this case is electron-phonon interaction, except
at low temperatures. This has been established in an order-of-magnitude calculation
by Abrikosov (1963). The Debye temperature in normal lattices is replaced in this case
by (Mestel and Ruderman 1967)

bp = hwy/ks = 3.9 X 10502 ° K , 1)

where w, = (4nZ22N1/MQ)V? is the plasma frequency (Nr = the number of ions in
volume Q with mass My and charge Z; the atomic weight 4 = 2Z is assumed), ps =
p/10°% and ks = Boltzmann’s constant. Below 6p, there are competing processes which
contribute to the thermal and electrical resistance: phonon-electron, phonon-phonon,
and electron-impurity interactions. In a subsequent paper, the low-temperature elec-
tron-phonon interaction will be investigated.

Here we calculate the electrical and thermal conductivity in the case T > fp.
Umblapp-processes (U-processes) as well as normal processes (V -processes) are taken
into account. Screening of the ions is introduced through use of a dielectric constant.
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Relativistic effects are assumed important only in the wave function, which is a solu-
tion of the Dirac equation, and in the Boltzmann equation.

II. ELECTRON-PHONON SCATTERING TRANSITION PROBABILITY
The Hamiltonian of the electron-lattice system in equilibrium is?

where Hr=Hi+ H.+ Hu, (2)
Hr = 53222 + Zug ViR = Ry), (3a)

H, = Zila:ps + Bm] + Ei>j,% , (3b)

Hy = Z,:V(ri— R,) . (3¢)

Here H describes the interaction of the ions through the potential Vi(R, — Rg); H.

describes the relativistic electrons, and H,; the interaction between electrons and ions.

The a’s and B are the usual Dirac matrices. The following assumptions are made:
1. The total state vector is assumed to be of the form

¥ = ¢ell> ’ (4)

where ¥, is the electronic state and |/) is the lattice state.

2. The lattice Hamiltonian is expressed in standard form by the introduction of
creation and annihilation operatorsxazf. Ziman 1960). The equilibrium positions of the
ions are referred to as R,°; the actual positions, R,. For a general motion of the lattice,
we express the vibrations as sums over the normal modes:

R.,— R'=mn, = Zse:¢, exp (ik*R.D) . (5)

1
(N M)

The sum denoted by the subscript s is over polarization (u) and wave vectors (k) in
the first Brillouin zone; e, is the unit vector; and £, is the wave amplitude of a (u, k)-
labeled phonon. The matrix elements of £ between lattice states / and /’ are (Ziman
1960)

QUENY) = Qo) PNy, e s + (N + 120y, v, 4], ©)

where w, is the frequency of an s-labeled phonon and N, is the number of phonons in
this mode.
3. The interaction between electrons is neglected; i.e., the term ¢*/r,; is dropped.
4. We have solved the problem of the electrons interacting with the ions in their
equilibrium positions to first order by standard perturbation theory. The resulting wave
function is given by

Y(x) = Q71 + ¢(x, p)] exp (5p-x)u(p) , @)

where the %(p) are the standard spinor solutions of the free-particle Dirac equation and
¢(x, p) is an operator given by

_ Ar(p + K,) voexp (—iKax)
{(x, ) = drZeNi 2Ky~ S ot @®)

Here A.(p) is the Dirac projection (casimir) operator, the K,’s are reciprocal lattice
vectors, vo = 8, and E(p) = (p* + m?)/% Except at a Brillouin-zone boundary, i.e.,

1 Natural units (# = ¢ = 1) are used throughout.
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where E(p) = E(p + K,), this is a small correction to the plane-wave solution on the
order of the ratio of the Coulomb to the Fermi energy. For relativistic electrons, this
can be neglected, and the electronic wave functions taken as Dirac plane waves. (Note
that the solution above is for dielectric constant unity. The introduction of a dynamic
dielectric constant is considered below. Here, its effect would clearly be to reduce the
interactions between electrons and ions, i.e., to make {(x, p) smaller, and the plane
wave an even better approximation.)

According to the above, the equilibrium problem is thus assumed solved, and the

state vector is
v =y|h, 9

where ¥ is now the free-electron Dirac field.
We now allow the atoms to move from their equilibrium positions. This introduces
the perturbation potential

VI =ZJV(>—R) — V(r — RY)] = Zem: VV(r — RY) . (10)
Here 7 is the electronic position, and V is the screened Coulomb potential:

V(r— RO = é(zzr;rz_)? S dig =P [23;((;,;) RO]

Here we have made two approximations; namely, (1) that the static dielectric constant
can be used, and (2) that a nonrelativistic (nonretarded) Coulomb potential describes
the interaction. Following Canuto (1970), we take

¢’e(q,0) = ¢ + 72, (12)

where X.rp2 = 2au(u?® — 1)V2/7 (X, = m™') is the Debye length for a relativistic
degenerate electron gas, u is the Fermi energy in units of m, and a = €2
The interaction Lagrangian becomes

(11)

Qine = —&lle | ¥ vudwbi|l) = —e(ls ¥y V' (r — Rl 1) (13)
and the interaction Hamiltonian is simply
Hine = S d8ne . (14)
Thus one has
o __AmdZ g1 Nt
Hlnt - Q q2 + fD_2 u(p) u(p) y (15)
with .
g=p —bp, I= (lflza“a e€xp (—i¢°R.) I L), (16)

and we have introduced the notation p, p’ for the initial and final electron momenta;
and /;, I; for the initial and final lattice states. The matrix element I is evaluated easily
with the help of equations (5) and (6) and by using the relation

Z, exp (il*RY) = Nid(l, K,) , (17)

where K, is a reciprocal lattice vector, and §(1, K,) is the Kronecker delta. Then equa-
tion (16) becomes

I= (NI/MI)llzzsea(lf|£s|li»("; g+ K,), (18)

where now, for ¢ outside the 1st Brillouin zone, K, is the reciprocal lattice vector which,
added to g, brings it back into this zone (U-processes).
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Remembering that
{ q, ¢ in first Brillouin zone
k=
g+ K., ¢ out of first Brillouin zone,

and squaring the matrix element, summing over initial and averaging over final spin
states, one obtains the transition probability

1+ e + PP cos @
SO F 7

Wb, #) = Wi {5, Q2 (s — o~ o)
“ (19)

+ M+ D5 — e+ e},
where now P = p/m, Q = g/m, & = P2+ 1, PP = PP'cosb, v = X./r0, & =

ws/m, and
W = 2 Nim 1
T QXM R

Note that the summation is simply over the polarization part of the index s.

(20)

III. THE HIGH-TEMPERATURE APPROXIMATION

We must now consider the factors =(Q-e;)?N,/ e which occur in equation (19). For
large T, assuming the phonons are in thermal equilibrium, we have N, + 1 = N, =
[exp (ws/ksT) — 17! = ksT/w,. Thus these factors become

. 2 o 2
zuﬁg:—“) N, ~ mksTZ, (Owe;) . (1)

Now, in the ordinary Debye model, w, = ¢k, where ¢, is the sound speed. However, in
the case of the high densities under consideration here, where the Debye screening
length is much larger than the interatomic distance, Salpeter (1961) has pointed out
that the frequency is practically independent of the wavelength and is simply the
plasma frequency. Thus, for all but the smallest %, we can replace w, by w,, so that

3, e y, o BT 0, (22)

€ mwy?X.2

(Actually, a more detailed analysis of the phonon spectrum [Abrikosov 1963] shows
that w, = w, only for longitudinal phonons. However, Q-e, is zero for transverse
phonons in N-processes, and can be taken, as an approximation, to equal Q for both
N- and U-processes.) Ordinarily for U-processes, where ¢ can be large and & can be
small, this would be a bad approximation. But here, the number of cases in which
w, K wp is so small that the error introduced can be neglected. Thus the U-processes
become indistinguishable from the N-processes, and it is a completely straightforward
calculation to obtain the relaxation time and finally the thermal conductivity. The
relaxation time is well defined as a result of this indistinguishability between the N-
and U-processes, since now the transition probability depends only on the magnitude
of the momentum transfer, and not its direction.

Finally, we make the approximation that the collisions are elastic, i.e., ¢ — ¢ +
exe’ — €. This is a good approximation for all but small scattering angles, since the
Fermi momentum is some MeV, while ¢, is at most a few keV. This then yields the high-
temperature transition probability

N ksT Q2 1+ e’ 4+ PP cos 8
W(p, ¢') = 2W, me K2 (0 + %) e’
valid for T > 6p.

8 —¢, (23)
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1IV. THE THERMAL AND ELECTRICAL CONDUCTIVITIES

The relativistic Boltzmann equation in three-dimensional notation is given by (Kur-
sunoglu 1961)

f+v Vf + (eE + ev X B)-V,f = (aj) (24)

where Vv, = [0E(p)/3p]d/0E(p) and equation (24) differs from the nonrelativistic
equation only in this term. One need only consider equation (24) with df/d¢t, vf, and
B set equal to zero. The resulting equation then corresponds to the application of an
electric field to an isothermal medium, and the first-order correction to the distribution
function (or density matrix) can then be used to calculate the isothermal electrical
conductivity. Since in the high-temperature case under consideration a single unique
relaxation time can be calculated, the Widemann-Franz law holds, which relates the
thermal and electrical conductivities by the relation (cf. Ziman 1960)

(ka (25)

where K7 is the thermal and ¢ is the electrical conductivity coefficient. Thus in this
case it suffices to solve the equation

eE-V,f°(p) = —Zpx, W', D1 ') — f1 (D], (26)

where f°(p) is the density matrix in the unperturbed state, i.e., the Fermi distribution
function, and f'(p) is the first-order correction to the diagonal matrix elements. The
right-hand side is the first-order expression for (df/dt).. The equation is solved by

standard methods: we set (3f/9f). = —f(p)/7(e), and let f1(p) = —x(p) (8f°(p)/de),
where x(p) = p-a(e). Because of energy conservation, the factor a(e) doesn’t enter the

formulae.
The relaxation time is then simply

T e) = SWQ, p)(1 — cos ) = = S BPWQ, p)(1 — cos §), (27)

(2r )33( 3
which becomes, after the energy integration,

dZ(A - 2)"é+1+4+62) _
e [2860—-2)+P

where we have introduced the notation Z =cos 0, 8 = € — 1, 75! = 4QWoksT/
[(27)*mw,?X J]. Note that, in contradistinction to a Debye solid, the integration extends
over all angles. This is because of the above-mentioned indistinguishability between the
N- and U-processes. The integral is simple to evaluate; it turns out to be

2¢ + 342/4
8@ — 1)

where 6 = v2/(48 + v?) = v%*/(4¢® + v* — 4). With the relaxation time 7(e), the solu-
tion to the Boltzmann equation (27) is straightforward:

THe) = = B"”z f F( )

eF(e) = [4(¢ — 1) + v*(1 + 8 + 2 In 8)] — 2(¢ — 1)*%5/+*, (28)

7@ = —er9E L2 (29)
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Finally, the current is given by
OE(p) :
To= oo SOV SR 1), (302)

or, in dimensionless quantities,
___2_  ,upPsa
J. REE J &P - ) . (30b)

Upon substituting equation (29) into equation (30b) and noting that we can replace
P.? by 3P? and that ¢ = J;/E,, we obtain

_ 26’0 3p L2 -1 9f°(0)
c= T )3m3§3fdp 2 [F(e)] Fyt (31)

Now d?P = 4re(e2 — 1)V%de, and df%(p)/de =~ — (e — u) where p is the chemical po-
tential in units of m. Thus we have

o= 0'04’(#) ’ (32)

where now

1 m 1 51843 2 1)
= emrn T X0t o =EEEE, 69

and F(u) is glven by equatlon (28). In the fully relativistic degenerate case, when it is
noted that v2 = au® <K u?, ¢(u) becomes to good approx1mat10n 2u? = 2(pe/me)?® and

o = 1.03685T s (ps/ pe)?® X 102 sec™! . (34)

Here p. is the so-called electron molecular weight (cf. Chiu 1968). The remarkable
outcome is that the conditions in the lattice enter only through the temperature and the
chemical potential of the electrons! That is, the conductivity is entirely independent of
the mass of the ions, their charge, and their density! This peculiar circumstance arises
as a result of the fact that the phonon frequencies are given by the plasma frequency of
the ions, for all wavelengths. Equations (19) and (20) plus the discussion following show
that the strength of the interaction goes roughly as w,?/w,?, which product contains all
the information about conditions in thelattice. When w, = w,, the interaction is uniformly
weak. This is because the amplitude of the phonons goes as w,™! (see eq. [6]) which in a
Debye solid is usually greater than w,™. Thus we expect, and find, a high value for
the conductivity in such a lattice.

The thermal conductive opacity coefficient is related to Ky through the Widemann-
Franz law and the relation

4a _
K, = 3; T*Kr™', a= {sn%st. (35)
Thus we find

0.3rae*X,

Kc = kBm

u2ps~SBT® X 107 = 2.8095u8p, 58T X 107 (36)

in the ultrarelativistic case. (A more exact formula can be obtained from egs. [25],
[32], [33], and [35].)

The above formulae are applicable for ps > 10, and Ty > T > 6p, where Ty is
the melting temperature. Ty is generally estimated to lie in the range 75 < I < 150,
where T' = 23p¢!/325/3T¢1, For Z > 2, Ty > 0p.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970ApJ...161..553S

J. . _I61. Z55380

DAG

rt

No. 2, 1970 ELECTRICAL AND THERMAL CONDUCTIVITY 559

This work was initiated as a result of discussions with H. Y. Chiu and V. Canuto.
Dr. Canuto is especially thanked for his assistance and criticism. Helpful discussions
with M. Ruderman and J. M. Luttinger are a pleasure to acknowledge. Particular
thanks go to A. J. Leggett of Sussex University for many fruitful conversations and a
critical reading of the manuscript. This work was supported by a NAS-NRC Post-
doctoral Research Associateship. The author thanks Dr. R. Jastrow for his hospitality
at the Institute for Space Studies. This work was completed while the author was a
guest at the Max-Planck-Institut fiir Physik und Astrophysik. The author thanks
Professor L. Biermann for his kind hospitality there.

REFERENCES

Abrikosov, A. A. 1960, JET P, 39, 1797 (English translation, 1961, Soviet Phys.—JETP, 12, 1254).
. 1963, JETP, 45, 2038 (English translation, 1964, Soviet Phys.—JETP, 18, 1399).

Canuto, V. 1970, Ap. J., 159, 641.

Chiu, H. Y. 1968, Stellar Physics (Waltham, Mass.: Blaisdell Publishing Co.).

Lampe, M. 1968, Phys. Rev., 170, 306.

Kursunoglu, B. 1961, Nuclear Fusion, 1, 213.

Mestel, L., and Ruderman, M. A. 1967, M.N.R.A.S., 136, 27.

Ruderman, M. A. 1968, Nature, 218, 1128.

Salpeter, E. E. 1961, Ap. J., 134, 669.

Ziman, J. M. 1960, Electrons and Phonons (London: Oxford University Press).

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970ApJ...161..553S

J. . _I61. Z55380

DAG

rt

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970ApJ...161..553S

